These Examination Regulations have been worded carefully to be up to date; however, errors cannot be completely excluded. The official German text available at the Examinations Office is the version that is legally binding.

Please note:
These degree programme and examination regulations apply to students who start a Bachelor's or Master's degree programme in Computational Engineering from the winter semester 2007/08.
Students who started a Master's degree programme before that or who are starting in the winter semester 2007/08 may choose to be examined either according to these degree programme and examination regulations or according to the previous version of the degree programme and examination regulations (http://www.uni-erlangen.de/universitaet/organisation/recht/studienatzungen/TECHFAK/FPO_CompEngineering_ALT.pdf).

For students who started their studies before the latest amendment came into effect: please also note the previous amendments with their transitory provisions.

– New Degree Programme and Examination Regulations –
Degree Programme and Examination Regulations for the Bachelor's and Master's Degree Programmes in Computational Engineering at the Faculty of Engineering at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) – FPOCE –
Dated 19 September 2007

amended by statutes of
25 July 2008
3 December 2009
30 July 2010
31 July 2012
29 July 2013
24 July 2014
18 January 2016

Based on Section 13 (1)(2), Section 43 (4)(5), Section 61 (2)(1) of the Bavarian Higher Education Act (Bayerisches Hochschulgesetz, BayHSchG), FAU enacts the following examination regulations:

Part I: General Provisions

Section 35 Scope
The degree programme and examination regulations for the Bachelor's and consecutive Master's degree programmes in Computational Engineering complement the currently valid General Examination Regulations for the Bachelor's and Master's degree programmes at the Faculty of Engineering at FAU – ABMPO/TechFak –.
Section 36 Bachelor's Degree Programme, Standard Duration of Studies

(1) The degree programme is composed of the orientation phase (Grundlagen- und Orientierungsphase), which consists of the modules of the first two semesters, and the Bachelor's phase, which consists of the remaining modules until the end of the standard duration of studies. The modules and programme structure can be found in Appendix 1.

(2) The standard duration of the Bachelor's degree programme is six semesters.

Section 37 Master's Degree Programme, Standard Duration of Studies

The standard duration of the Master's degree programme is four semesters. The modules and programme structure can be found in Appendix 2.

Section 38 Teaching Languages and International Orientation

The degree programme in Computational Engineering is bilingual. The teaching units are usually held in German in the first four semesters of the Bachelor's degree programme, in German or in English in the fifth and sixth semesters, and usually in English in the Master's degree programme (first to fourth semesters). Further details are stipulated in the module handbook. Students may choose whether oral examinations are to be carried out in English or German, otherwise the examination language is the same as the teaching language. The Bachelor's thesis may be written in English. The Master's thesis shall usually be written in English. The degree certificate and final academic record shall be issued in German and English.

Section 39 Technical Application Fields

Several technical application fields are offered as part of the Computational Engineering degree programme. A representative is appointed for each technical application field. The Examinations Committee shall appoint the representatives for the technical application fields and decide which technical application fields are eligible at the recommendation of the Degree Programme Committee for CE. The list of eligible technical application fields shall be announced according to local practice one week before the beginning of the lecture period at the latest.

Section 40 Subject Advisors

The Examinations Committee shall appoint a subject advisor for the Bachelor's degree programme and the Master's degree programme in Computational Engineering at the Degree Programme Committee's recommendation.

Part II: Special Provisions for the Bachelor's Degree Programme

Section 41 Study Plan

Students shall declare their choice of technical application field and elective subject to the Examinations Office in writing and submit a study plan in the course of the second semester. The study plan states which modules must be passed by students, including compulsory modules in computer science, applied mathematics and their chosen technical application field, elective engineering modules and modules relating to core skills. The representative of each technical application field can provide a standard study plan for their field with a workload of approx. 30 ECTS credits per semester. Changes to the elective engineering modules or core skills modules must be approved beforehand in writing by both the study advisor and the representative of the technical application field. Students select the stipulated number of modules from the modules available for elective engineering modules and core skills. A change of technical application field, elective
engineering subject or core skills module shall only be permitted if previous failed attempts are recorded.

Section 42 Grundlagen- und Orientierungsprüfung, GOP

1 The preliminary examination (GOP) according to Section 3 (1)(1) ABMPO/TechFak shall have been passed when modules from the first year of studies (first and second semester) worth 30 ECTS credits have been passed. 2 The eligible modules from the first year of studies are the following:
1. Algorithmen und Datenstrukturen
2. Computational Engineering I
3. Computational Engineering II
4. Mathematik für CE 1
5. Mathematik für CE 2
6. Experimentalphysik für Naturwissenschaftler I
7. Experimentalphysik für Naturwissenschaftler II.

Section 43 Scope of the Bachelor's Degree Programme

(1) The Bachelor's degree programme consists of:
1. compulsory and elective modules worth 145 ECTS credits, categorised as compulsory modules in computer science and mathematics, compulsory elective modules in the technical application field and elective engineering modules,
2. elective core skills worth 15 ECTS credits, consisting of one core skills module (5 ECTS credits) and one internship or practical module (10 ECTS credits),
3. Bachelor's programme seminar (5 ECTS credits)
4. Bachelor's thesis module (15 ECTS credits).

(2) The following number of ECTS credits must be achieved in the modules specified in (1)(1):
1. According to Appendix 1, compulsory modules worth 47.5 ECTS credits must be completed in computer science.
2. According to Appendix 1, compulsory modules worth 37.5 ECTS credits must be completed in mathematics.
3. In the technical application field, at least 35 ECTS credits must be achieved according to the modules specified in the study plan.
4. Elective engineering modules worth a maximum of 25 ECTS credits must be completed according to the modules specified in the study plan.

(3) The modules in the technical application field are modules from Bachelor's degree programmes at the Faculty of Engineering or the Department of Physics at the Faculty of Sciences, which are taught by a lecturer from the Faculty of Engineering or the Department of Physics at the Faculty of Sciences. Sentence 1 shall not apply to modules taught by a lecturer from the Department of Computer Science at the Faculty of Engineering.

(4) Elective engineering modules are modules from Bachelor's degree programmes at the Faculty of Engineering which are taught by a lecturer from the Faculty of Engineering or the Departments of Mathematics and Physics at the Faculty of Sciences.

(5) The internship or practical module is worth 10 ECTS credits. The internship shall take the form of eight weeks of vocational practice (internship) completed according to the internship guidelines for the degree programme in Computational Engineering before or during the degree programme. Alternatively, students may choose a practical module from a catalogue of eligible modules from other Bachelor's degree programmes at the
Faculty of Engineering. The list of eligible practical modules shall be announced according to local practice one week before the beginning of the lecture period at the latest.

Section 44 Bachelor’s Degree Examinations
(1) The type and scope of the examinations in the Bachelor's degree programme shall be governed by Appendix 1, unless otherwise specified in the following paragraphs.

(2) The type and scope of the examinations for the computer science modules in the orientation phase (Grundlagen- und Orientierungsphase) and the computer science modules in the Bachelor's phase shall be governed by the current version of the degree programme and examination regulations for Computer Science (FPOINF), with the exception of the modules Computational engineering 1, Simulation und wissenschaftliches Rechnen I, and Simulation und wissenschaftliches Rechnen II.

(3) The type and scope of the examinations for the modules in the technical application field and the elective engineering modules shall be governed by the relevant degree programme and examination regulations, with the exception of the module Computational engineering 2.

(4) The Bachelor's programme seminar shall be graded and examined as follows:
 1. If the seminar is offered as part of another Bachelor's degree programme at the Faculty of Engineering, the type and scope of the examinations shall be governed by the relevant degree programme and examination regulations.
 2. If the seminar is offered as part of the degree programme in Computational Engineering, a presentation of at least 45 minutes and completion of a written assignment shall be required in order to pass the module.

Section 45 Bachelor's Thesis
(1) ¹The Bachelor's thesis is intended to enable students to learn to solve computational engineering problems independently. ²Students are awarded 12 ECTS credits for their Bachelor's thesis; requirements for the thesis shall be such that it can be completed within approximately 360 hours. ³The results of the Bachelor's thesis shall be introduced in a presentation of approximately 30 minutes (3 ECTS credits) followed by a discussion. ⁴The date of the presentation shall be determined by the supervising lecturer either after the student has submitted their Bachelor's thesis or during the final stage of thesis work. ⁵The date shall usually be within four weeks of the date on which the thesis was submitted; students shall be notified of the date at least two weeks in advance.

(2) The Bachelor's thesis shall deal with a scientific subject from the field of computational engineering and shall be written under the supervision of a full-time lecturer at the Faculty of Engineering.

(3) ¹It is recommended that students begin work on the Bachelor's thesis no earlier than at the beginning of the fifth semester. ²Admission to the Bachelor's thesis shall be governed by Section 27 (3)(2) ABMPO/TechFak.

Section 46 Evaluation of Achievements for the Bachelor's Degree Programme
(1) ¹The Bachelor's degree programme shall have been passed if all modules from the study plan worth 180 ECTS credits have been passed. ²If an internship is chosen as part of the elective core skills, proof must be provided of an eight-week internship recognised by the Internship Office (Praktikumsamt) according to the internship guidelines for the degree programme in Computational Engineering.
The overall grade of the Bachelor's degree shall be calculated from the module grades, not including the elective core skills (core skills and internship/practical module).

The modules from the orientation phase (semesters 1 and 2) shall be weighted with a value of 0.75 and the modules from the Bachelor's phase (semesters 3 to 6) shall be weighted with a value of 1.0.

Part III: Special Provisions for the Master's Degree Programme

Section 47 Study Plan

Students shall declare their choice of technical application field to the Examinations Office in writing and submit a study plan before registering for the first examination. The study plan states which elective modules students must complete in mathematics, computer science, and the technical application field and in which semester the modules must be completed; students should earn 30 ECTS credits per semester. Students shall choose the specified number of modules from the technical application field, from the compulsory elective modules in computer science, and from the compulsory elective modules in applied mathematics. Section 41(3), (4) and (6) shall apply accordingly.

Section 48 Qualification for a Master's Degree, Certificates and Admission requirements

(1) A subject-specific degree within the meaning of Section 29(1)(1) ABMPO/TechFak is a Bachelor's degree in Computational Engineering. According to (5)(4) Appendix 1 ABMPO/TechFak, applicants with a different degree to that specified in sentence 1 but in a related subject (degrees in applied mathematics, physics, computer science or engineering) may only be admitted to the Master's degree programme by passing the admission examination according to (4).

(2) The following additional documents within the meaning of (2)(4) of Appendix 1 ABMPO/TechFak shall be required:
1. proof of English language proficiency according to sentence 2
2. an English-language CV in tabular form, where applicable with proof of any relevant professional activity or internships which are relevant with regard to the subject of the Master's degree programme.

The following shall be accepted as proof of English language proficiency: Abitur (university entrance qualification) certificate, subject-specific university entrance qualification for engineering (fachgebundene Hochschulreife in der Fachrichtung Technik) or comparable certificates at the level of UNCert CII or European Framework of Reference for Languages B2.

(3) An applicant shall be considered qualified for the Master's degree programme according to Appendix 1, (5)(2)(2) ABMPO/TechFak if modules from the third to sixth semesters in mathematics, computer science, a technical application field and elective engineering modules worth 50 ECTS credits have been passed with a minimum grade of 3.0.

(4) In the oral admission examination according to (5)(3) et seq. of Appendix 1 ABMPO/TechFak, applicants shall be evaluated according to the following criteria:
1. quality of basic knowledge of computer science and applied mathematics (50 percent)
2. quality of basic knowledge acquired during the Bachelor's degree programme that forms the basis for specialisation in one of the technical application fields in the Master's degree programme; the applicant may choose one subject from those that are eligible for the technical application field (50 percent).

Section 49 Scope of the Master's Degree Programme

(1) The Master's degree programme consists of a total of 120 ECTS credits, made up of
1. 85 ECTS credits in the three groups of compulsory elective modules
 a) compulsory elective modules in computer science,
 b) compulsory elective modules in mathematics with the following compulsory modules:
 - Funktionsanalyse für Ingenieure (5 ECTS credits)
 - Optimierung für Ingenieure (7.5 ECTS credits)
 c) compulsory elective modules in the technical application field, whereby at least 20 ECTS credits must be acquired for each group of compulsory elective modules
2. successful participation in the Master's programme seminar (5 ECTS credits)
3. the Master's thesis module (30 ECTS credits).

(2) Compulsory elective modules in computer science are modules from the Master's degree programme in Computer Science that are taught by a lecturer at the Department of Computer Science at the Faculty of Engineering.

(3) Compulsory elective modules in mathematics are
1. modules from the Master's degree programme in Mathematics or Industrial Mathematics taught by a lecturer at the Chair of Applied Mathematics at the Faculty of Sciences or
2. modules from the Master's degree programmes at the Faculty of Engineering on mathematical topics taught by a lecturer at the Faculty of Engineering.

(4) The compulsory elective modules in the technical application field are modules from Master's degree programmes at the Faculty of Engineering or the Faculty of Sciences which are taught by a lecturer from the Faculty of Engineering or the Faculty of Sciences. Sentence 1 shall not apply to modules offered by lecturers at the Department of Computer Science at the Faculty of Engineering or the Department of Mathematics at the Faculty of Sciences.

(5) When choosing modules in the technical application field and elective engineering modules, it must be proven that they will lead to the student gaining subject knowledge in the Master's degree programme in Computational Engineering in comparison to their Bachelor's degree programme.

Section 50 Master's Degree Examinations

(1) The type and scope of the examinations in the Master's degree programme shall be governed by Appendix 2, unless otherwise specified in the following paragraphs.

(2) The type and scope of the examinations in the compulsory elective modules in computer science, in the compulsory elective modules in mathematics and in the compulsory elective modules in the technical application field shall be governed by the relevant degree programme and examination regulations.

(3) The Master's programme seminar shall be examined as follows:
1. If the seminar is originally offered as part of another Master's degree programme at the Faculty of Engineering, the type and scope of the examination shall be governed by the relevant degree programme and examination regulations.

2. If the seminar is originally offered as part of the Master's degree programme in Computational Engineering, a presentation of at least 45 minutes and completion of a written assignment shall be required in order to pass the module.

Section 51 Requirements for Admission to the Master's Thesis
Students shall pass modules worth a minimum of 70 ECTS credits to qualify for admission to the Master's thesis.

Section 52 Master's Thesis
(1) The Master's thesis demonstrates students' ability to solve computational engineering problems independently. The thesis shall have a workload of approximately 810 hours to be completed within six months. An extension of two months shall only be permitted in exceptional cases. The results of the Master's thesis shall be introduced in a presentation of approximately 30 minutes followed by a discussion. The date of the presentation shall be determined by the supervising lecturer either after the student has submitted their Master's thesis or during the final stage of thesis work. The date shall usually be within four weeks of the date on which the thesis was submitted; students shall be notified of the date at least two weeks in advance.

(2) The Master's thesis shall preferably deal with a scientific subject from one of the student's specialisations. The subject shall be allocated by a full-time university lecturer who teaches the compulsory elective subject in question. The Master's thesis shall be written under the supervision of a full-time lecturer who teaches at the Faculty of Engineering.

(3) 30 ECTS credits shall be awarded for the Master's thesis.

Section 53 Evaluation of Achievements for the Master's Degree Programme
The Master's degree programme shall have been passed if all modules from the relevant study plan worth 120 ECTS credits have been passed.

Part IV: Final Provisions

Section 54 Legal Validity and Transitory Provisions
(1) These degree programme and examination regulations shall come into effect on 1 October 2007. They shall apply to all students who start the Bachelor's or Master's degree programme in Computational Engineering in the winter semester 2007/2008 or later.

(2) All students already studying a Master's degree programme in Computational Engineering at FAU in the winter semester 2007/08 or starting the Master's degree programme in Computational Engineering at FAU in the winter semester 2007/08 shall have the choice between continuing their studies under these degree programme and examination regulations or completing their studies under the degree programme and examination regulations for the Bachelor's and Master's degree programme in Computational Engineering at FAU dated 13 April 2000 (KWMBI II, p. 940), last amended by statute from 19 February 2004. Students shall apply in writing to the Examinations Office to change examination regulations by the end of the winter semester 2007/08 at the latest. The examinations of the Bachelor's examination and the Master's examination according to sentence 1 shall be conducted for the last time in the following examination periods:
1. Bachelor's examination: after the winter semester 2010/2011

Examinations after these examination periods shall be conducted according to these degree programme and examination regulations.

(3) At the same time as these degree programme and examination regulations come into effect, the Degree Programme and Examination Regulations for the Bachelor's and Master's Degree Programme in Computational Engineering at FAU from 13 April 2000 (KWMBI II, p. 940), last amended by statute from 19 February 2004, shall cease to be in force, subject to the provisions in (2).
Appendix 1: Structure of the Bachelor's Degree Programme

<table>
<thead>
<tr>
<th>Module title</th>
<th>SWS (semester hours)</th>
<th>Total ECTS</th>
<th>Distribution of workload per semester in ECTS credits</th>
<th>Type and scope of the examination/course achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>Computer science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithmen und Datenstrukturen (GOP)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Computational engineering 1 (GOP)</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemprogrammierung</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Simulation und Modellierung 1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation und wissenschaftliches Rechnen 1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Simulation und wissenschaftliches Rechnen 2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik für CE 1 ¹) (GOP)</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik für CE 2 ¹) (GOP)</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik für CE 3 ¹)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematik für CE 4 ¹)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerik I für Ingenieure</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerik II für Ingenieure</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical application field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik für Naturwissenschaftler I (GOP)</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik für Naturwissenschaftler II (GOP)</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational engineering 2 (GOP)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF modules</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) see FPOINF, Appendix 1

PfE: EA (WE 90) + CA (TA)

EA/CA: MHB
<table>
<thead>
<tr>
<th>Module title</th>
<th>SWS (semester hours)</th>
<th>Total ECTS</th>
<th>Distribution of workload per semester in ECTS credits</th>
<th>Type and scope of the examination/course achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>E</td>
<td>C</td>
</tr>
<tr>
<td>Elective engineering modules</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Elective core skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core skills</td>
<td>4</td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Internship / practical module</td>
<td></td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Bachelor's programme seminar</td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bachelor's thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accompanying seminar + presentation</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Written Bachelor's thesis</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Total SWS (semester hours)</td>
<td>70</td>
<td>47</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Total ECTS credits</td>
<td>180</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Notes:
- GOP: preliminary examination (Grundlagen- und Orientierungsprüfung)
- PIE: portfolio examination
- EA: examination achievement (graded)
- CA: course achievement (ungraded)
- WE60/WE90/WE120: written examination lasting 60, 90 or 120 min.
- TA: tutorial achievement
- PA: practical achievement
- SA: seminar achievement
- MHB: type and scope of the course and examination achievements are set out in the module handbook depending on the module which is chosen

1) The equivalence of the mathematics modules in the degree programmes of the Faculty of Engineering shall be announced according to local practice.
Appendix 2: Structure of the Master's Degree Programme

<table>
<thead>
<tr>
<th>Module title</th>
<th>SWS (semester hours)</th>
<th>Total ECTS</th>
<th>Workload per semester in ECTS credits</th>
<th>Type and scope of the examination/course achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionalanalyse für Ingenieure</td>
<td>2 2</td>
<td>5</td>
<td>5</td>
<td>PIE: EA (WE 60) + CA (TA)</td>
</tr>
<tr>
<td>Optimierung für Ingenieure</td>
<td>3 2</td>
<td>7.5</td>
<td>7.5</td>
<td>PIE: EA (WE 60) + CA (TA)</td>
</tr>
<tr>
<td>Further mathematics modules: determined in the study plan (min. 7.5 ECTS) ¹)</td>
<td>6 3</td>
<td>≥7.5</td>
<td></td>
<td>EA/CA: MHB</td>
</tr>
<tr>
<td>Computer science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer science modules: determined in the study plan (min. 20 ECTS) ¹)</td>
<td>12 8 4</td>
<td>≥20</td>
<td></td>
<td>EA/CA: MHB</td>
</tr>
<tr>
<td>Technical application field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAF modules: determined in the study plan (min. 20 ECTS) ¹)</td>
<td>12 8 4</td>
<td>≥20</td>
<td></td>
<td>EA/CA: MHB</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master's thesis</td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total SWS (semester hours)</td>
<td>35 23 8 2</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total ECTS credits</td>
<td>120</td>
<td>30 30 30 30</td>
<td>30 30 30 30</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- GOP: Grundlagen- und Orientierungsprüfung
- PIE: portfolio examination
- EA: examination achievement (graded)
- CA: course achievement (ungraded)
- WE60: written examination lasting 60 min.
- TA: tutorial achievement
- PA: practical achievement
- SA: seminar achievement
- MHB: type and scope of the course and examination achievements are set out in the module handbook depending on the module which is chosen

¹) If after completing the minimum number of ECTS credits required in compulsory elective modules in this group the total number of ECTS credits that must be completed in all groups of compulsory elective modules (85 ECTS credits) has not been achieved, compulsory elective modules worth more than the minimum number of ECTS credits required must be taken in one of the other groups.